Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Negl Trop Dis ; 14(11): e0008623, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33253172

RESUMO

BACKGROUND: Guinea worm-Dracunculus medinensis-was historically one of the major parasites of humans and has been known since antiquity. Now, Guinea worm is on the brink of eradication, as efforts to interrupt transmission have reduced the annual burden of disease from millions of infections per year in the 1980s to only 54 human cases reported globally in 2019. Despite the enormous success of eradication efforts to date, one complication has arisen. Over the last few years, hundreds of dogs have been found infected with this previously apparently anthroponotic parasite, almost all in Chad. Moreover, the relative numbers of infections in humans and dogs suggests that dogs are currently the principal reservoir on infection and key to maintaining transmission in that country. PRINCIPAL FINDINGS: In an effort to shed light on this peculiar epidemiology of Guinea worm in Chad, we have sequenced and compared the genomes of worms from dog, human and other animal infections. Confirming previous work with other molecular markers, we show that all of these worms are D. medinensis, and that the same population of worms are causing both infections, can confirm the suspected transmission between host species and detect signs of a population bottleneck due to the eradication efforts. The diversity of worms in Chad appears to exclude the possibility that there were no, or very few, worms present in the country during a 10-year absence of reported cases. CONCLUSIONS: This work reinforces the importance of adequate surveillance of both human and dog populations in the Guinea worm eradication campaign and suggests that control programs aiming to interrupt disease transmission should stay aware of the possible emergence of unusual epidemiology as pathogens approach elimination.


Assuntos
Doenças do Cão/parasitologia , Dracunculíase/parasitologia , Dracunculus/genética , Genoma Helmíntico , África , Animais , Reservatórios de Doenças/veterinária , Doenças do Cão/epidemiologia , Cães , Dracunculíase/epidemiologia , Dracunculus/classificação , Feminino , Humanos , Masculino , Mamíferos
2.
Curr Biol ; 19(17): 1453-7, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19716302

RESUMO

Understanding the key process of human mutation is important for many aspects of medical genetics and human evolution. In the past, estimates of mutation rates have generally been inferred from phenotypic observations or comparisons of homologous sequences among closely related species. Here, we apply new sequencing technology to measure directly one mutation rate, that of base substitutions on the human Y chromosome. The Y chromosomes of two individuals separated by 13 generations were flow sorted and sequenced by Illumina (Solexa) paired-end sequencing to an average depth of 11x or 20x, respectively. Candidate mutations were further examined by capillary sequencing in cell-line and blood DNA from the donors and additional family members. Twelve mutations were confirmed in approximately 10.15 Mb; eight of these had occurred in vitro and four in vivo. The latter could be placed in different positions on the pedigree and led to a mutation-rate measurement of 3.0 x 10(-8) mutations/nucleotide/generation (95% CI: 8.9 x 10(-9)-7.0 x 10(-8)), consistent with estimates of 2.3 x 10(-8)-6.3 x 10(-8) mutations/nucleotide/generation for the same Y-chromosomal region from published human-chimpanzee comparisons depending on the generation and split times assumed.


Assuntos
Cromossomos Humanos Y , Evolução Molecular , Mutação Puntual , Humanos , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
3.
Genome Res ; 18(10): 1624-37, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18583645

RESUMO

We have determined the complete genome sequences of a host-promiscuous Salmonella enterica serovar Enteritidis PT4 isolate P125109 and a chicken-restricted Salmonella enterica serovar Gallinarum isolate 287/91. Genome comparisons between these and other Salmonella isolates indicate that S. Gallinarum 287/91 is a recently evolved descendent of S. Enteritidis. Significantly, the genome of S. Gallinarum has undergone extensive degradation through deletion and pseudogene formation. Comparison of the pseudogenes in S. Gallinarum with those identified previously in other host-adapted bacteria reveals the loss of many common functional traits and provides insights into possible mechanisms of host and tissue adaptation. We propose that experimental analysis in chickens and mice of S. Enteritidis-harboring mutations in functional homologs of the pseudogenes present in S. Gallinarum could provide an experimentally tractable route toward unraveling the genetic basis of host adaptation in S. enterica.


Assuntos
Evolução Molecular , Genoma Bacteriano , Salmonella enteritidis/genética , Salmonella/genética , Adaptação Fisiológica/genética , Animais , Galinhas/microbiologia , Camundongos , Dados de Sequência Molecular , Salmonelose Animal/genética , Salmonelose Animal/microbiologia
4.
Genome Res ; 18(5): 729-41, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18403782

RESUMO

Mycobacterium marinum, a ubiquitous pathogen of fish and amphibia, is a near relative of Mycobacterium tuberculosis, the etiologic agent of tuberculosis in humans. The genome of the M strain of M. marinum comprises a 6,636,827-bp circular chromosome with 5424 CDS, 10 prophages, and a 23-kb mercury-resistance plasmid. Prominent features are the very large number of genes (57) encoding polyketide synthases (PKSs) and nonribosomal peptide synthases (NRPSs) and the most extensive repertoire yet reported of the mycobacteria-restricted PE and PPE proteins, and related-ESX secretion systems. Some of the NRPS genes comprise a novel family and seem to have been acquired horizontally. M. marinum is used widely as a model organism to study M. tuberculosis pathogenesis, and genome comparisons confirmed the close genetic relationship between these two species, as they share 3000 orthologs with an average amino acid identity of 85%. Comparisons with the more distantly related Mycobacterium avium subspecies paratuberculosis and Mycobacterium smegmatis reveal how an ancestral generalist mycobacterium evolved into M. tuberculosis and M. marinum. M. tuberculosis has undergone genome downsizing and extensive lateral gene transfer to become a specialized pathogen of humans and other primates without retaining an environmental niche. M. marinum has maintained a large genome so as to retain the capacity for environmental survival while becoming a broad host range pathogen that produces disease strikingly similar to M. tuberculosis. The work described herein provides a foundation for using M. marinum to better understand the determinants of pathogenesis of tuberculosis.


Assuntos
Evolução Molecular , Genoma Bacteriano/genética , Mycobacterium marinum/genética , Mycobacterium tuberculosis/genética , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Parede Celular/química , Regulação Bacteriana da Expressão Gênica , Genômica , Dados de Sequência Molecular , Filogenia
5.
J Bacteriol ; 190(11): 4027-37, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18375554

RESUMO

The gram-negative enteric bacterium Proteus mirabilis is a frequent cause of urinary tract infections in individuals with long-term indwelling catheters or with complicated urinary tracts (e.g., due to spinal cord injury or anatomic abnormality). P. mirabilis bacteriuria may lead to acute pyelonephritis, fever, and bacteremia. Most notoriously, this pathogen uses urease to catalyze the formation of kidney and bladder stones or to encrust or obstruct indwelling urinary catheters. Here we report the complete genome sequence of P. mirabilis HI4320, a representative strain cultured in our laboratory from the urine of a nursing home patient with a long-term (> or =30 days) indwelling urinary catheter. The genome is 4.063 Mb long and has a G+C content of 38.88%. There is a single plasmid consisting of 36,289 nucleotides. Annotation of the genome identified 3,685 coding sequences and seven rRNA loci. Analysis of the sequence confirmed the presence of previously identified virulence determinants, as well as a contiguous 54-kb flagellar regulon and 17 types of fimbriae. Genes encoding a potential type III secretion system were identified on a low-G+C-content genomic island containing 24 intact genes that appear to encode all components necessary to assemble a type III secretion system needle complex. In addition, the P. mirabilis HI4320 genome possesses four tandem copies of the zapE metalloprotease gene, genes encoding six putative autotransporters, an extension of the atf fimbrial operon to six genes, including an mrpJ homolog, and genes encoding at least five iron uptake mechanisms, two potential type IV secretion systems, and 16 two-component regulators.


Assuntos
Aderência Bacteriana/genética , Genoma Bacteriano , Proteus mirabilis/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quimiotaxia/genética , Cromossomos Bacterianos , Feminino , Fímbrias Bacterianas/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos CBA , Dados de Sequência Molecular , Movimento/fisiologia , Plasmídeos/genética , Infecções por Proteus/microbiologia , Proteus mirabilis/patogenicidade , Proteus mirabilis/fisiologia , Infecções Urinárias/microbiologia , Virulência/genética , Fatores de Virulência/genética
6.
PLoS Genet ; 2(12): e206, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17173484

RESUMO

The human enteropathogen, Yersinia enterocolitica, is a significant link in the range of Yersinia pathologies extending from mild gastroenteritis to bubonic plague. Comparison at the genomic level is a key step in our understanding of the genetic basis for this pathogenicity spectrum. Here we report the genome of Y. enterocolitica strain 8081 (serotype 0:8; biotype 1B) and extensive microarray data relating to the genetic diversity of the Y. enterocolitica species. Our analysis reveals that the genome of Y. enterocolitica strain 8081 is a patchwork of horizontally acquired genetic loci, including a plasticity zone of 199 kb containing an extraordinarily high density of virulence genes. Microarray analysis has provided insights into species-specific Y. enterocolitica gene functions and the intraspecies differences between the high, low, and nonpathogenic Y. enterocolitica biotypes. Through comparative genome sequence analysis we provide new information on the evolution of the Yersinia. We identify numerous loci that represent ancestral clusters of genes potentially important in enteric survival and pathogenesis, which have been lost or are in the process of being lost, in the other sequenced Yersinia lineages. Our analysis also highlights large metabolic operons in Y. enterocolitica that are absent in the related enteropathogen, Yersinia pseudotuberculosis, indicating major differences in niche and nutrients used within the mammalian gut. These include clusters directing, the production of hydrogenases, tetrathionate respiration, cobalamin synthesis, and propanediol utilisation. Along with ancestral gene clusters, the genome of Y. enterocolitica has revealed species-specific and enteropathogen-specific loci. This has provided important insights into the pathology of this bacterium and, more broadly, into the evolution of the genus. Moreover, wider investigations looking at the patterns of gene loss and gain in the Yersinia have highlighted common themes in the genome evolution of other human enteropathogens.


Assuntos
Genoma Bacteriano , Yersinia enterocolitica/genética , Evolução Molecular , Genômica , Análise em Microsséries , Dados de Sequência Molecular , Yersinia enterocolitica/classificação , Yersinia enterocolitica/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA